Real-Time High-Performance Attention Focusing for Outdoors Mobile Beobots
نویسندگان
چکیده
When confronted with cluttered natural environments, animals still perform orders of magnitude better than artificial vision systems in tasks such as orienting, target detection, navigation and scene understanding. The recent widespread availability of significant computational resources, however, in particular through the deployment of so-called "Beowulf" clusters of low-cost personal computers, leaves us little excuse for the enormous gap still separating biological from machine vision systems. We describe a neuromorphic model of how our visual attention is attracted towards conspicuous locations in a visual scene. It replicates processing in posterior parietal cortex and other brain areas along the dorsal visual stream in the primate brain. The model includes a bottom-up (image-based) computation of low-level color, intensity, orientation and motion features, as well as a non-linear spatial competition which enhances salient locations in each of these feature channels. All feature channels feed into a unique scalar "saliency map" which controls where to next focus attention onto. Because it includes a detailed low-level vision front-end, the model has been applied not only to laboratory stimuli, but also to a wide variety of natural scenes. In addition to predicting a wealth of psychophysical experiments, the model demonstrated remarkable performance at detecting salient objects in outdoors imagery -sometimes exceeding human performance -despite wide variations in imaging conditions, targets to be detected, and environments. The present paper focuses on a recently completed parallelization of the model, which runs at 30 frames/s on a 16-CPU Beowulf cluster, and on the enhancement of this real-time model to include motion cues in addition to the previously studied color, intensity and orientation cues. The parallel model architecture and its deployment onto Linux Beowulf clusters are described, as well as several examples of applications to real-time outdoors color video streams. Implementation on a 4-CPU rugged high-speed mobile robot, a "Beobot," is also described. The model proves very robust at detecting salient targets from live video streams, despite large possible variations in illumination, rapid camera jitter, clutter, or omnipresent optical flow (e.g., when used on a moving vehicle). The success of this approach suggests that the neuromorphic architecture described may represent a robust and efficient real-time machine vision front-end, which can be used in conjunction with more detailed localized object recognition and identification algorithms to be applied at the selected salient locations.
منابع مشابه
A Mobile and Fog-based Computing Method to Execute Smart Device Applications in a Secure Environment
With the rapid growth of smart device and Internet of things applications, the volume of communication and data in networks have increased. Due to the network lag and massive demands, centralized and traditional cloud computing architecture are not accountable to the high users' demands and not proper for execution of delay-sensitive and real time applications. To resolve these challenges, we p...
متن کاملVision-Based Real-Time Traversable Region Detection for Mobile Robot in the Outdoors
Environment perception is essential for autonomous mobile robots in human-robot coexisting outdoor environments. One of the important tasks for such intelligent robots is to autonomously detect the traversable region in an unstructured 3D real world. The main drawback of most existing methods is that of high computational complexity. Hence, this paper proposes a binocular vision-based, real-tim...
متن کاملDelay Compensation on Fuzzy Trajectory Tracking Control of Omni-Directional Mobile Robots
This paper presents a delay compensator fuzzy control for trajectory tracking of omni-directional mobile robots. Fuzzy logic control (FLC) of the robots is a suitable strategy for dealing with model uncertainties, nonlinearities and disturbances. On the other hand, in many robotic applications such as mobile robots, delay phenomenon is able to substantially deteriorate the behavior of system's...
متن کاملDesign and Evaluation of a Method for Partitioning and Offloading Web-based Applications in Mobile Systems with Bandwidth Constraints
Computation offloading is known to be among the effective solutions of running heavy applications on smart mobile devices. However, irregular changes of a mobile data rate have direct impacts on code partitioning when offloading is in progress. It is believed that once a rate-adaptive partitioning performed, the replication of such substantial processes due to bandwidth fluctuation can be avoid...
متن کاملA Geometric Algebra Animation Method for Mobile Augmented Reality Simulations in Digital Heritage Sites
To populate real, ancient cultural heritage sites with low-cost, mobile virtual augmentations has been a demand from cultural professionals established long time ago. In this work we aim to address this demand by introducing three main novelties: a) employing an open, cross-platform mobile framework for 3D virtual character rendering & animation based on open standards b) for outdoors life-size...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002